Global Forest Monitoring: CTFS-ForestGEO network

Kristina J. Anderson-Teixeira Stuart J. Davies

May 4, 2014

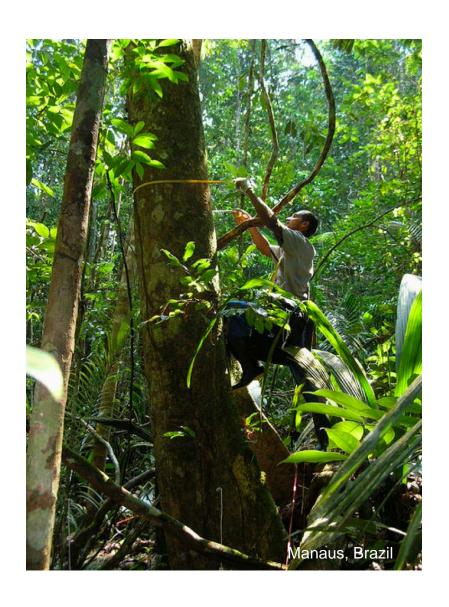
Center for Tropical Forest Science (CTFS)- Forest Global Earth Observatory (ForestGEO)

the only ground-based forest monitoring network applying the same protocol to forests globally

64 sites | 25 countries | 100 partner institutions > 10,000 species | > 6 million trees | > 15 million DBH measurements

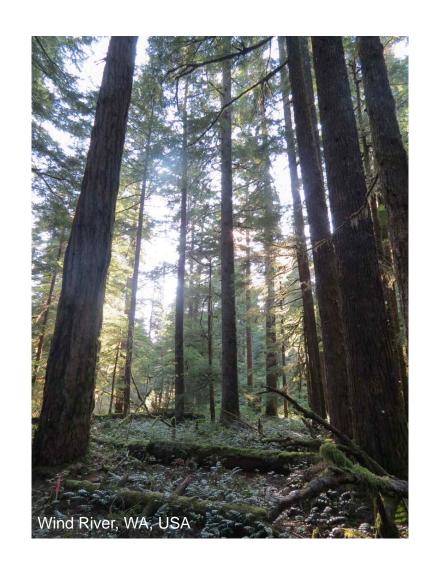
Global Change Biology (2015) 21, 528–549, doi: 10.1111/gcb.12712

REVIEW

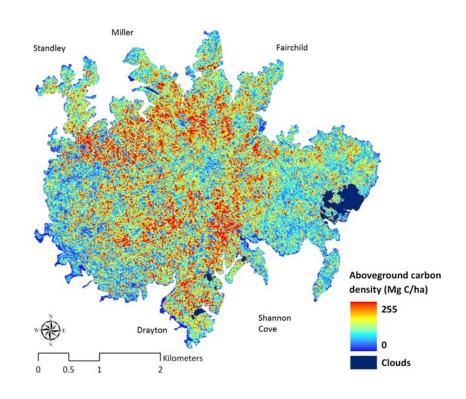

CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change

KRISTINA J. ANDERSON-TEIXEIRA^{1,2}, STUART J. DAVIES^{1,3}, AMY C. BENNETT², ERIKA B. GONZALEZ-AKRE², HELENE C. MULLER-LANDAU¹, S. JOSEPH WRIGHT¹, KAMARIAH ABU SALIM⁴, ANGÉLICA M. ALMEYDA ZAMBRANO^{2,5,6}, ALFONSO ALONSO⁷, JENNIFER L. BALTZER⁸, YVES BASSET¹, NORMAN A. BOURG², EBEN N. BROADBENT^{2,5,6}, WARREN Y. BROCKELMAN⁹, SARAYUDH BUNYAVEJCHEWIN¹⁰, DAVID F. R. P. BURSLEM¹¹, NATHALIE BUTT^{12,13}, MIN CAO¹⁴, DAIRON CARDENAS¹⁵, GEORGE B. CHUYONG¹⁶, KEITH CLAY¹⁷, SUSAN CORDELL¹⁸, HANDANAKERE S. DATTARAJA¹⁹, XIAOBAO DENG¹⁴, MATTEO DETTO¹, XIAOJUN DU²⁰, ALVARO DUQUE²¹, DAVID L. ERIKSON³, CORNEILLE E.N. EWANGO²², GUNTER A. FISCHER²³, CHRISTINE FLETCHER²⁴, ROBIN B. FOSTER²⁵, CHRISTIAN P. GIARDINA¹⁸, GREGORY S. GILBERT^{26,1}, NIMAL GUNATILLEKE²⁷, SAVITRI GUNATILLEKE²⁷, ZHANQING HAO²⁸, WILLIAM W. HARGROVE²⁹, TERESE B. HART³⁰, BILLY C.H. HAU³¹, FANGLIANG HE³², FORREST M. HOFFMAN³³, ROBERT W. HOWE³⁴, STEPHEN P. HUBBELL^{1,35}, FAITH M. INMAN-NARAHARI³⁶, PATRICK A. JANSEN^{1,37}, MINGXI JIANG³⁸, DANIEL I. JOHNSON¹⁷. MAMORU KANZAKI³⁹, ABDUL RAHMAN KASSIM²⁴, DAVID KENFACK^{1,3}, STALINE KIBET^{40,41}, MARGARET F. KINNAIRD^{42,43}, LISA KORTE⁷, KAMIL KRAL⁴⁴, JITENDRA KUMAR³³, ANDREW J. LARSON⁴⁵, YIDE LI⁴⁶, XIANKUN LI⁴⁷, SHIRONG LIU⁴⁸, SHAWN K.Y. LUM⁴⁹, JAMES A. LUTZ⁵⁰, KEPING MA²⁰, DAMIAN M. MADDALENA³³, JEAN-REMY MAKANA⁵¹, YADVINDER MALHI¹³, TOBY MARTHEWS¹³, RAFIZAH MAT SERUDIN⁵², SEAN M. MCMAHON^{1,53}, WILLIAM J. McSHEA², HERVÉR. MEMIAGHE⁵⁴, XIANGCHENG MI²⁰, TAKASHI MIZUNO³⁹, MICHAEL MORECROFT⁵⁵, JONATHAN A. MYERS⁵⁶, VOJTECH NOVOTNY^{57,58}, ALEXANDRE A. DE OLIVEIRA⁵⁹, PERRY S. ONG⁶⁰, DAVID A. ORWIG⁶¹, REBECCA OSTERTAG⁶², JAN DEN OUDEN⁶³, GEOFFREY G. PARKER⁵³, RICHARD P. PHILLIPS¹⁷, LAWREN SACK³⁵, MOSES N. SAINGE⁶⁴, WEIGUO SANG²⁰, KRIANGSAK SRI-NGERNYUANG⁶⁵, RAMAN SUKUMAR¹⁹, I-FANG SUN⁶⁶, WITCHAPHART SUNGPALEE⁶⁵, HEBBALALU SATHYANARAYANA SURESH¹⁹, SYLVESTER TAN⁶⁷, SEAN C. THOMAS⁶⁸, DUNCAN W. THOMAS⁶⁹, JILL THOMPSON^{70,71}, BENJAMIN L. TURNER¹, MARIA URIARTE⁷², RENATO VALENCIA⁷³, MARTA I. VALLEJO⁷⁴, ALBERTO VICENTINI⁷⁵, TOMÁŠ VRŠKA⁴⁴, XIHUA WANG⁷⁶, XUGAO WANG³⁰, GEORGE WEIBLEN⁷⁷, AMY WOLF⁷⁸, HAN XU⁴⁶, SANDRA YAP⁶⁰ and JESS ZIMMERMAN⁷¹

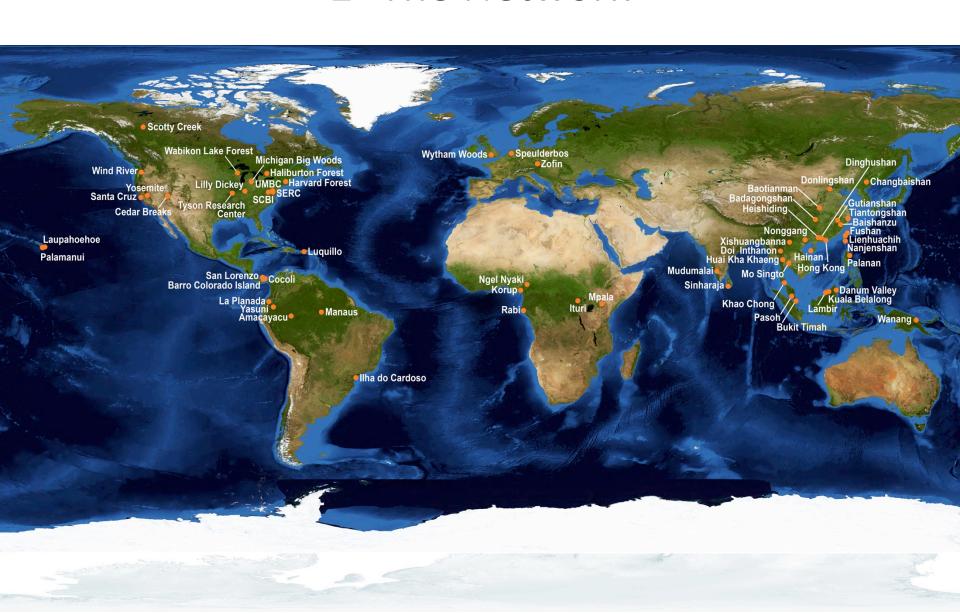
Outline


- 1. Core census
- 2. The network
- 3. Supplementary measurements
- 4. Network growth & operations

1- Core Census

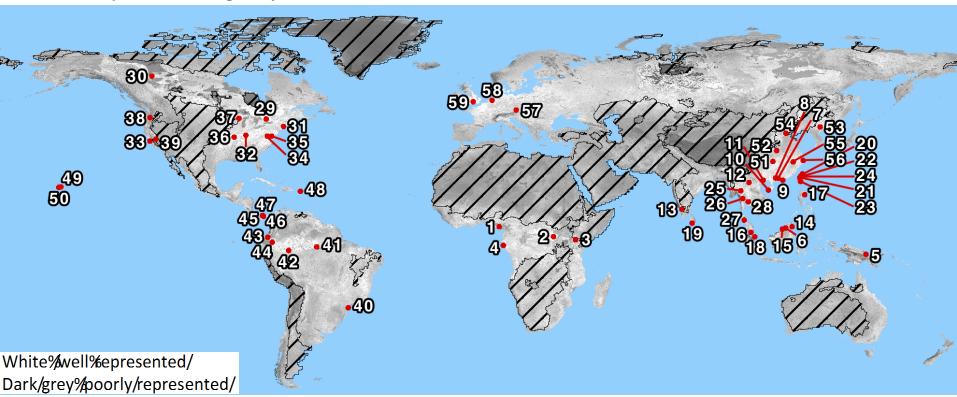

Attributes of a CTFS-ForestGEO Census

- Very large plot size
- Includes every freestanding woody stem ≥1cm DBH
- All individuals identified to species
- Diameter measured on all stems
- Mapping of all stems and fine-scale topography
- Census typically repeated every 5 years

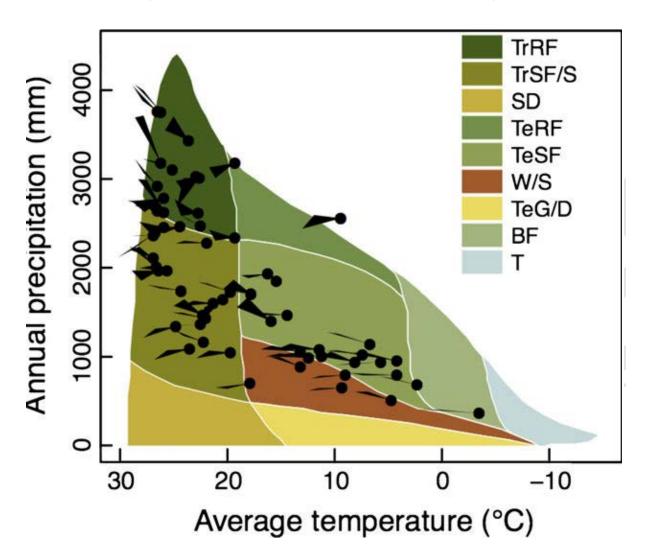


Anaxagorea panamensis Chamguava schippii Hybanthus prunifolius 50 ha Barro Colorado Island

Example applications of core census: mapping species distribution and C stocks on Barro Colorado Island (Panama)

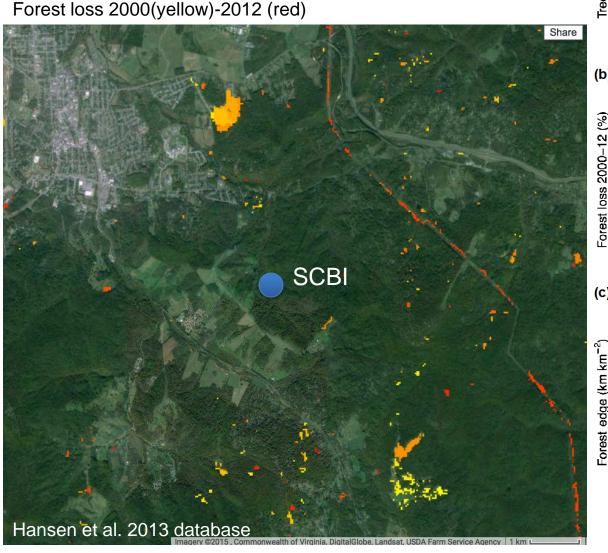


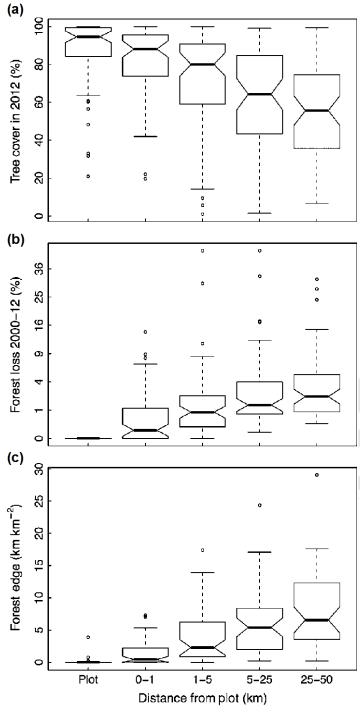
2- The Network



The CTFS-ForestGEO network represents the range of bioclimatic, edaphic, and topographic conditions experienced by forests globally.

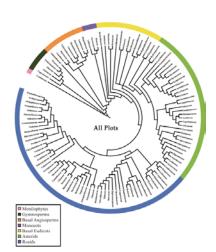
Multivariate spatial clustering analysis




Current Climate & Future Climate projections (HadGEM2-ES for 2050)

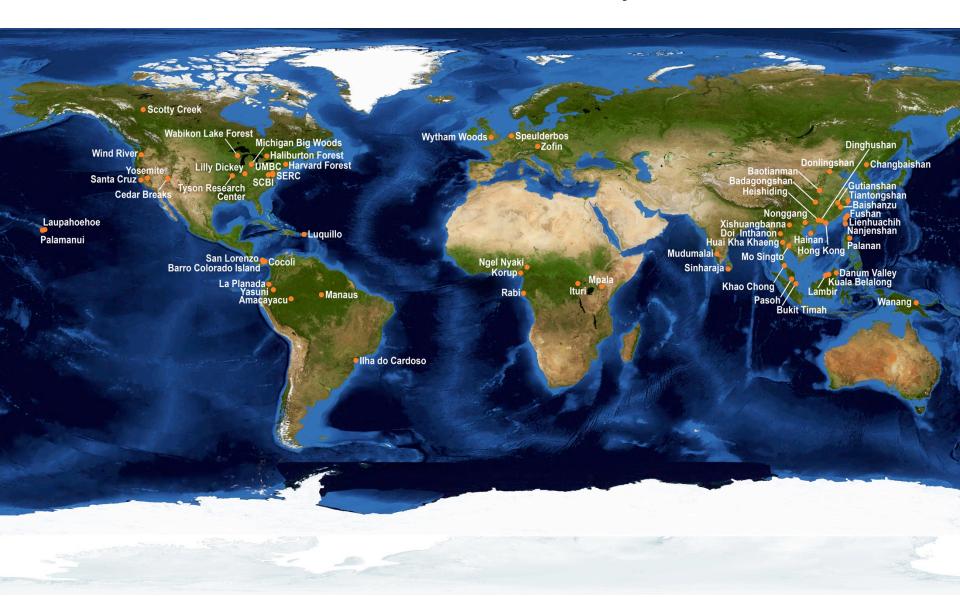
CTFS-ForestGEO plots in the landscape setting

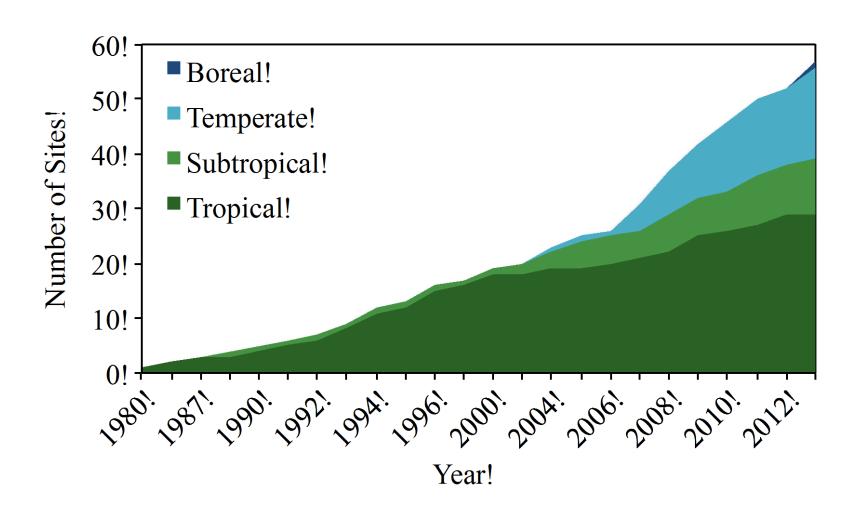
Forest loss 2000(yellow)-2012 (red)


3- Supplementary Measurements

Standardized measurements quantify multiple aspects of forest structure and function.

Measurement





4- Network Growth & Operations

Growth of CTFS-ForestGEO

Investigators

Network leadership: Smithsonian

Plots Principal Investigators

Home>Plots Principal Investigators

Dem. Rep. of Congo, Ituri

Dr. Corneille E.N. Ewango ewango_corneille@yahoo.com

Dr. Jean-Remy Makana jr_makana@yahoo.fr

Drs. Terese and John Hart TereseHart@aol.com

Cameroon, Korup

Dr. Duncan Thomas duncanwt@gmail.com

Dr. David Kenfack kenfackd@si.edu

Dr. George Chuyong Chuyong99@yahoo.com

Gabon, Rabi

Dr. Alfonso Alonso alonsoa@si.edu

Dr. Lisa Korte kortel@si.edu

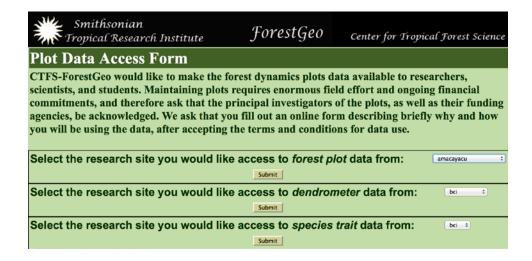
Mr. Hervé Memiaghe memiagheh@hotmail.com

Kenya, Mpala

Dr. Margaret Kinnaird mkinnaird@wcs.org

Dr. Paul Mutuku Musili pmutuku@museums.or.ke

National and International Training and Capacity Building


Strengthens scientific capacity across the global network of sites

Provide open-access analytical and data management tools

Data & Analysis

- Data archived in standardized format
- Stored in CTFS database or managed locally
- Owned by site PIs

 CTFS R package facilitates analysis

Leveraging CTFS-ForestGEO to understand forest dynamics in an era of global change

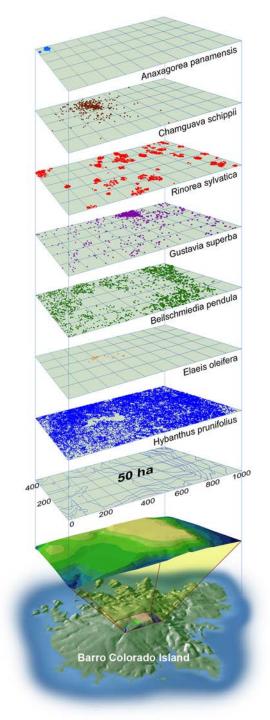
Smithsonian Institution Global Forest Observatory Center for Tropical Forest Science

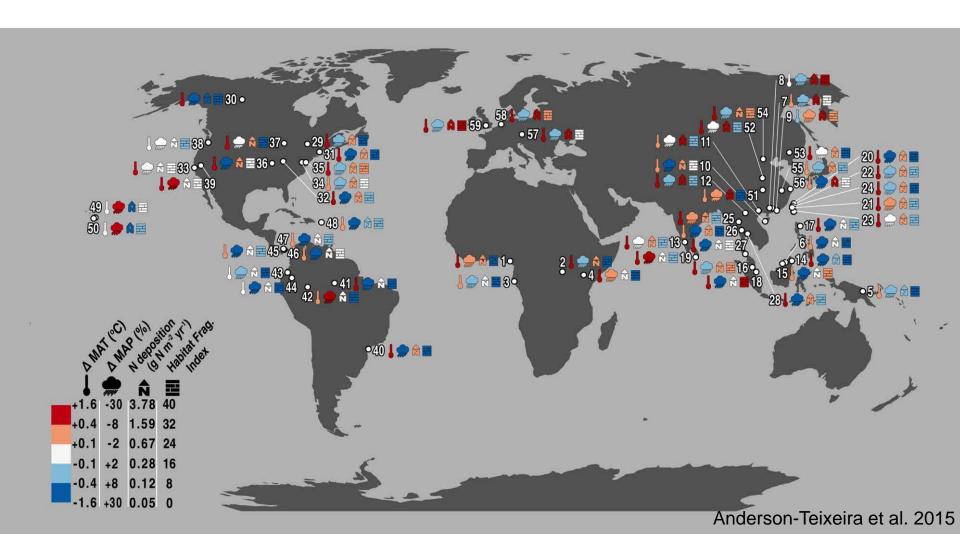
Support

National Science Foundation
HSBC
Frank H. Levinson Family Foundation
Bromley Charitable Trust
John Swire & Sons Inc.
Mellon Foundation
Arnold Arboretum, Harvard University

&

Smithsonian Institution


www.ctfs.si.edu

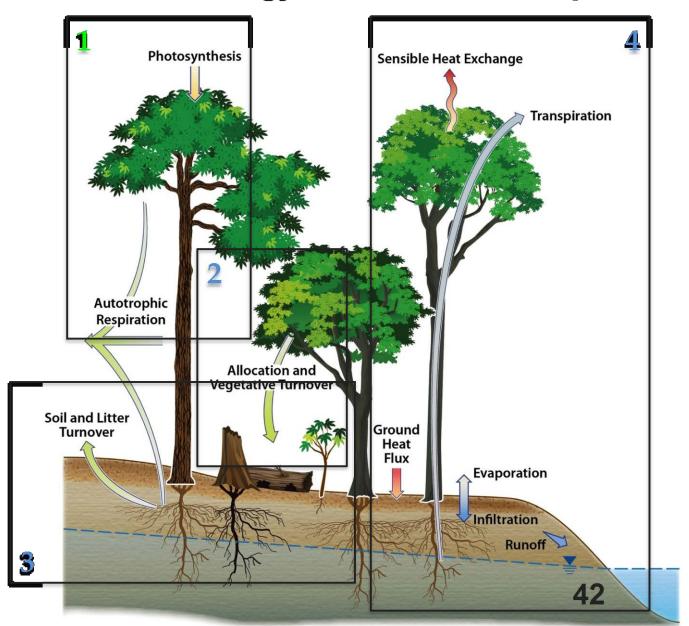


Results: Diversity & Dynamics of Tropical Forests

- 1. Tree species have aggregated spatial distributions driven by specific habitat requirements and limited dispersal.
- 2. The functional characteristics and demography of species depend on the resources available in their preferred sites.
- 3. Habitat specialization is not sufficient to explain local tree diversity (evidence for resource-based niches needed).
- Negative density-dependent effects are pervasive. Pests/pathogens are implicated.
- 2. Biomass & C storage depend on habitat, biogeography & phylogeny.
- 3. Forest communities are not in steady-state compositional equilibrium
- 1. Some (?most) tropical forests are increasing biomass stocks.
- 2. Trees are growing more slowly in some tropical forests.
- 3. Extirpation of animals is changing forest diversity.

Global change pressures across CTFS-ForestGEO

NEXT GENERATION ECOSYSTEM EXPERIMENT - TROPICS

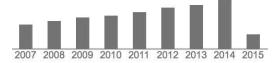


More detailed mechanistic models of processes determining carbon/energy balance in the tropics

Center for Tropical Forest Science (CTFS) - ForestGEO

Smithsonian Tropical Research Institute forest dynamics
Verified email at si.edu - Homepage

Title 1–20	Cited by	Year
The unified neutral theory of biodiversity and biogeography (MPB-32) SP Hubbell Princeton University Press		2001
Ecosystem decay of Amazonian forest fragments: a 22-year investigation WF Laurance, TE Lovejoy, HL Vasconcelos, EM Bruna, RK Didham, Conservation Biology 16 (3), 605-618	1164	2002
Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest SP Hubbell, RB Foster, ST O'Brien, KE Harms, R Condit, B Wechsler, Science 283 (5401), 554-557 Tree dispersion, abundance, and diversity in a tropical dry forest SP Hubbell Science 203 (4387), 1299-1309		1999
		1979
Tree allometry and improved estimation of carbon stocks and balance in tropical forests J Chave, C Andalo, S Brown, MA Cairns, JQ Chambers, D Eamus, Oecologia 145 (1), 87-99		2005
The Sustainable Biosphere Initiative: an ecological research agenda: a report from the Ecological Society of America J Lubchenco, AM Olson, LB Brubaker, SR Carpenter, MM Holland, Ecology 72 (2), 371-412		1991
Beta-diversity in tropical forest trees R Condit, N Pitman, EG Leigh, J Chave, J Terborgh, RB Foster, P Núnez, Science 295 (5555), 666-669		2002


 Citation indices
 All
 Since 2010

 Citations
 88612
 46187

 h-index
 166
 108

 i10-index
 663
 598

Q

Co-authors View all...

Richard Condit

William F. Laurance

Robin B Foster

S. Joseph Wright

Stuart J. Davies

Helene C. Muller-Landau

Kyle E. Harms

Jerome Chave

Renato Valencia

Liza Comita

Christopher Dick

Kristina J. Anderson-Teixeira